Hurst Parameter Estimation Techniques:
A Critical Review

Hae-Duck J. Jeong, Don McNickle! and Krzysztof Pawlikowski
Department of Computer Science and TDepartment of Management
University of Canterbury, New Zealand
E-mail: {{joshua, krys}@cosc, 'Tdem@mang}.canterbury.ac.nz

Abstract

Many recent studies of real teletraffic data in computer networks have shown evi-
dence of self-similarity. The Hurst parameter H plays an important role in char-
acterising self-similar processes. Thus, the estimation of the Hurst parameter of a
sequence with a finite number of values is crucial in determining whether a pro-
cess is self-similar. Parameter estimation techniques of the Hurst parameter have
received great attention in recent years. In this paper a comparative analysis of
the most frequently used H estimation techniques, the wavelet-based H estimator
and Whittle’s MLE estimator, periodogram, R/S-statistic, variance-time and IDC
estimation techniques, has been reported. Our results reveal that the wavelet-based
H estimator is the least biased of the H estimation techniques considered.

Keywords: Hurst parameter estimation techniques, Self-similar processes, Self-
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1 Introduction

Self-similar processes have been found to be relevant in a range of areas of scientific
activity such as climatology, economics, environmental sciences, geology, geophysics,
hydrology, telecommunications and computer science. Historically, the importance
of self-similar processes lies in the fact that they provide an elegant explanation and
interpretation of an empirical law. Namely, for a given sequence of random variables
{XL, Xo, -+, }, one can consider the rescaled adjusted range ?g:g (or R/S-statistic),
wit
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where ¢ is the time, m is the batch size and N; = Zle X;; and
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Hurst found empirically that for many time series observed in nature, the ex-

pected value of ggzg asymptotically satisfies the power-law relation:

t
E[M} —cemf, as m — oo, with 0.5 < H < 1,
S(t,m)

where c is a finite positive constant [2]. This empirical finding was in contradiction
to results for Markovian and related processes. For a stationary process with SRD,
E [?E:Z;} behaves asymptotically like a constant times m®°. Hurst’s finding that for
the Nile River data, and for many other hydrological, geophysical, and climatological
data, F [?gg ] behaves like a constant times m* for 0.5 < H, is known as the Hurst
effect. Mandelbrot and Wallis [9] showed that the Hurst effect can be modelled by
FGN with the self-similarity parameter 0.5 < H < 1. For example, Figure 1 shows
the yearly minimal water levels of the Nile River for the years 622-1281, measured
at the Roda Gauge near Cairo [2]. The presence of the self-similar behaviour is
evident. Since in this case the Hurst parameter from the R/S-statistic analysis (see
Figure 1 (b)) is above 0.8690.

Many recent studies of real teletraffic data in modern computer networks have
shown that teletraffic exhibits self-similar (or fractal) properties over a wide range of
time scales. The properties of self-similar teletraffic are very different from the tradi-
tional models based on Poisson, Markov-modulated Poisson, and related processes,
and the use of traditional models in networks characterised by self-similar processes
can lead to incorrect conclusions about the performance of analysed networks. These
include serious underestimations of the performance of computer networks, insuffi-
cient allocation of communication and data processing resources, and difficulties in
ensuring the quality of service expected by network users.

The Hurst parameter H plays an important role in characterising self-similar
processes. The estimation of the Hurst parameter of a sequence with a finite number
of values is crucial in determining whether a process is self-similar. Most Hurst
parameter estimation techniques are based on the idea of estimating the slope of a
linear fit in a log-log plot; for detailed discussion, see [6]. For example, the R/S-
statistic estimation technique is a well-known example of this approach, but has poor
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Figure 1: Yearly minimum water levels of the Nile River at the Roda Gauge for the
years 622-1281 (a) and their R/S-statistic analysis (b).



statistical performance; notably a high bias when the value of the Hurst parameter
(0.5 < H < 1) is small or large. Another example is the periodogram plot based
on a linear fit in a log1o(P(\)) against logio(A) plot, where P(-) is the periodogram
and A is frequency.

A comparative analysis of the most frequently used H estimation techniques,
the wavelet-based H estimator and Whittle’s MLE estimator, periodogram, R/S-
statistic, variance-time and IDC estimation techniques, has been done. Wavelet-
based and Whittle’s estimators are asymptotically unbiased and efficient in theory,
at least in the FGN case [1]. Assuming that this is the case for a Gaussian process
in general, the second-order statistics (i.e., variance and ACF) of the wavelet-based
and Whittle’s estimators would be asymptotically equivalent under Gaussian as-
sumptions.

To review the most commonly used estimation techniques of the Hurst parameter
considered, we use many pseudo-random self-similar sequences generated by (i) a
method based on the fractional-autoregressive moving average (F-ARIMA) process
[5]; and (ii) a method based on fractional Gaussian noise and Daubechies wavelets
(FGN-DW) [7]; for more detailed discussion, see [6].

2 Analytical Tools for Traffic Estimation

The accuracy of the most commonly used parameter estimation techniques of H
are analysed empirically by applying them to output sequences generated by our
generators. These techniques are as follows:

o Wawelet-based H Estimator: A wavelet-based H estimator is used to perform
a thorough analysis of LRD in teletraffic sequences. The wavelet-based plot is
obtained by plotting logs(2') against loga(1/n; Y- |d.(i,5)|?) to detect LRD,
the determination of the range of scales over which the power-law behaviour
holds [1].

o Whittle’s approzimate mazimum likelihood estimate (MLE): Whittle’s MLE is
used for a more refined data analysis to obtain confidence levels for the Hurst
parameter H [2]. It examines the properties in the frequency domain, while
the R/S-statistic plot and variance-time plot focus on the time domain.

e Periodogram plot: The periodogram plot is used to show whether a gener-
ated sequence represents an LRD process or not. If the autocorrelations are
summable, then, near the origin in the frequency domain, the periodogram
should be scattered randomly around a constant level. If the autocorrela-
tions are non-summable, i.e., LRD-type, the points of a sequence are scattered
around a straight line with negative slope. The periodogram plot is obtained
by plotting logio(periodogram) against log;o( frequency). An estimate of the
Hurst parameter is given by H = (1 — (3;)/2, where (3, is the slope [2].

e R/S-statistic plot: The Hurst parameter H can be estimated from empirical
data using an R/ S-statistic plot. An estimate of H is given by the asymptotic
slope (5 [2], i.e., H = (.

e Variance-time plot: The variance-time plot is obtained by plotting logio(m)
against logio(Var(X (™)) and by fitting a simple least square line through the



resulting points in the plane. An estimate of the Hurst parameter is given by
H =1 — (33/2, where (5 is the slope of the line [2].

e [ndex of dispersion for counts (IDC): The IDC captures the variability of traffic
over different time scales for a count process. For a given time interval of length
t, the IDC is given by the variance of the number of arrivals {X;} during the
interval of length ¢ divided by the expected value of the same quantity. Plotting
log1o(IDC(t)) against logyo(t) results in an asymptotic straight line with slope
2H - 1.

3 Finding Appropriate Sample Sizes

The estimate of the Hurst parameter H of a sequence should ideally be calculated
from an infinite number of values. However, this is impossible.

Different studies of self-similar sequences have been based on different sample
sizes. Mandelbrot and Wallis [9] used a sample of 9,000 numbers to measure the
value of the Hurst parameter using the R/S-statistic. Leland et al. [8], [13] analysed
the value of the Hurst parameter with sequences of 360,000 observations, where
each observation represents the number of bytes sent over the Ethernet per 10 mil-
liseconds. Taqqu et al. [12] used a sample size with 10,000 numbers, generated
50 different sequences for each of several values of H and compared the estimated
values of H with the required ones. Garrett and Willinger [4] presented a statistical
analysis of a two-hour long empirical sample of VBR video with 171,000 frames.
Paxson [10] used ten samples of 32,768 numbers, to obtain estimates of the Hurst
parameter. He confirmed that the stochastic dependence present in the generator
was consistent with having the required value of H using Whittle’s MLE. Rose [11]
studied traffic modelling of VBR MPEG video and its impacts on ATM networks
with different sequences of 40,000 frames of MPEG traffic data (it takes 30 min-
utes to obtain each sequence). An R/S-statistic estimation technique and Whittle’s
MLE estimator were used to estimate the Hurst parameter for MPEG traffic in [11].
Abry and Veitch [1] compared Whittle’s MLE and the wavelet-based estimators us-
ing small synthetic sample sequences of 4,096 numbers and the real Ethernet LAN
data set. They showed that the wavelet-based estimator is less biased than Whit-
tle’s MLE under Gaussian assumptions. A minimisation procedure is involved in
the Whittle estimator which requires many repetitive calculations, leading to a sig-
nificantly higher overall cost, while the wavelet-based estimator requires the simple
calculation of a discrete wavelet transform, which can be done in O(n) operations.

We evaluated the most commonly used methods for estimating the self-similarity
parameter H to find an unbiased or the least biased estimation technique to employ
in a comparative analysis of self-similar sequences produced by two generators. First,
we investigated new long of sequences need to be, and then analysed parameter
estimation techniques using appropriately long synthetic sequences generated by
pseudo-random self-similar generators. For each H = 0.5, 0.6, 0.7, 0.8 and 0.9, each
sequence with one million numbers is divided into sub-sequences (i.e., batch size)
m of 10,000, 20,000, ..., 100,000, 200,000, ..., 1,000,000 numbers. For example,
let a sequence be (z1,...,z,) and then divide the sequence into i sub-sequences
(21, .. ,:z;l), (T1g1y - s T2)s - ooy (@—1)ig1s--- - Ta), L >0, @ = [n/l]. Bach estimate
f[ .J = 1,...,4 is obtained using parameter estlmatlon techmques of H, and each
of the mean estimates H and the variance estimates are given by H = 1 Ji> H;
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(a) Wavelet-based H estimator. (b) Whittle’s MLE estimator.

Figure 2: For H = 0.5, 0.6, 0.7, 0.8 and 0.9, estimated H of H obtained from
the FGN-DW method using the wavelet-based H estimator and the Whittle’s MLE
estimator as the batch size increases from 10,000 to 1,000,000.

1,...,i,and 1/(i(i — 1)) S2(H,; — H)?, respectively [3].

In Figure 2 for H = 0.5, 0.6, 0.7, 0.8 and 0.9, log10 (Batch Size) is plotted against
the estimated H of H obtained from the FGN-DW method using the wavelet-based
H and Whittle’s MLE estimators. We chose these estimators as they give more
refined measurements than other estimation techniques [1], [8], [12]. Figure 2 (a)
shows that all curves of the estimated H using the wavelet-based H estimator slowly
converge toward the true values. The bottom-most three curves match the true
values at m = 100, 000. For H = 0.8, the curve of the estimated H matches the true
value at m = 500, 000, and for H = 0.9, the curve of the estimated H is the closest
to the true value at m = 500, 000. For all H values, the highest estimates of H show
at m = 500, 000, but all curves of estimates of H except for H = 0.9 are higher than
the true values. Then these curves slowly decrease until m = 1,000, 000. Figure 2
(b) also shows that all curves of the estimated H using the Whittle’'s MLE estimator
converge to true values. Thus, appropriate numbers of a long sequence for analysing
parameter estimation techniques for the Hurst parameter are recommended to be
between 30,000 and 500,000. We have chosen as the sequence length 32,768 (2'%)
for our review of these techniques.

4 Empirical Results

For H = 0.5, 0.6, 0.7, 0.8 and 0.9, each H estimate was applied in 30 sample
sequences of 32,768 numbers, generated by F-ARIMA and FGN-DW self-similar

generators to obtain its mean bias.

e F-ARIMA Method: In the F-ARIMA method, the wavelet-based H estimator
is the most accurate (Figure 3). For 0.5 < H < 0.8, the estimates of the
wavelet-based H estimator match the true values, but when H = 0.9, it does
not. For H < 0.73, the R/S-statistic H estimate is positively biased; for
0.73 < H, it is negatively biased. The other H estimation techniques are
negatively biased.



e FGN-DW Method: The wavelet-based H estimator gives the best result for
the FGN-DW method (Figure 4). For H < 0.8, the estimates match the true
values well, although when H = 0.9, it does not. The R/S-statistic estimate
produces the same results as in the above method. The other estimation

techniques are negatively biased.
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Figure 3: Bias performance of H estimation techniques for the F-ARIMA
method.
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Figure 4: Bias performance of H estimation techniques for the FGN-DW
method.



5 Conclusions

Our results have confirmed that the wavelet-based H estimator is the least biased
of the H estimation techniques considered, supporting Abry and Veitch’s results
[1]. While the bias of the R/S-statistic and the periodogram estimation techniques
change from positive to negative as the H value increases, the variance-time esti-
mation technique, IDC estimation technique, wavelet-based H and Whittle’s MLE
estimators are steadily negatively biased. Even though they are biased, the best
estimator of the self-similarity parameter H is the wavelet-based H estimator. Fur-
thermore, the wavelet-based H estimator and the periodogram estimation technique
are much faster than Whittle’s MLE estimator, the R/S-statistic, variance-time and
IDC estimation techniques.
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