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Abstract 

 
One not-so-intuitive result in auction theory is the Revenue Equivalence Theorem, 
which states that, as long as an auction complies with some conditions, it will on 
average generate the same revenue to an auctioneer as the revenue generated by any 
other auction with the same conditions. Surprisingly the conditions are not defined on 
the payment rules to the bidders but on the fact that the bidders do not bid below a 
reserve value – defined by the auctioneer -, the winner is the one with the highest bid 
and there is a common equilibrium bid function used by all bidders. In this paper we 
verify such result using extensive simulation of a broad range of auctions and focus on 
the variability or fluctuation about the average that the results show. These fluctuations 
are observed and measured in two dimensions for each type of auction: as the number of 
auctions grows and as the number of bidders increases.  
 
Keywords: Revenue equivalence theorem, auctions, auction simulation. 
 
1   Introduction 
 

In the early 1980’s a series of papers appeared in the economics literature on auctions, 
dealing specially with the issue of the expected revenue to an auctioneer in a single-
object auction. The pioneer work of Vickrey offered the first insights into the expected 
revenues of four different auctions finding them to be equivalent (Milgrom, 2004). The 
main result, appearing in (Riley and Samuelson, 1981), and (Myerson 1981) became 
known as the Revenue Equivalence Theorem. The theorem states that, as long as an 
auction complies with some conditions, it will on average generate the same revenue to 
an auctioneer as the revenue generated by any other auction with the same conditions. 
Surprisingly the conditions are not defined on the payment rules to the bidders but on 
the facts that bidders do not bid below a reserve value – defined by the auctioneer -, the 



 

winner is the one with the highest bid and there is a common equilibrium bidding 
function used by all bidders.  
 

More specifically, as Klemperer puts it (Klemperer, 2004), “…each of a given 
number of risk-neutral potential buyers of an object has a privately known signal 
independently drawn from a common, strictly increasing, atomless distribution. Then 
any auction mechanism in which  
(i) the object always goes to the buyer with the highest signal, and 
(ii) any bidder with the lowest-feasible signal expects zero surplus, 
yields the same expected revenue (and results in each bidder making the same expected 
payment as a function of her signal).” 
 

The result applies both to private-value models – every player’s value is 
independently drawn from the same continuous distribution on a finite interval- and to 
more general common-value models provided bidders’ signals are independent.  
 
2   Is an auctioneer interested in the variability of the mean revenue? 
 

The Revenue Equivalence Theorem has been a remarkable piece in the construction of a 
theory of auctions. Under the stated conditions such seemingly different auctions as the 
all-pay or the second-price sealed-bid, yield the same expected revenue. As Milgrom 
affirms (Milgrom, 2004) one practical use of the revenue equivalence theorem is as a 
benchmark for the analyses of revenues in auctions, when the assumptions of the 
theorem do not hold or cannot be verified properly.  
 

A main concern to be addressed in this paper is that of an auctioneer trying to decide 
which auction to use. Suppose an auctioneer has an object to sell. If he knew such an 
object represented a private value to all potential bidders, bidders values were 
independent and any bid placed for the auction was larger than a reservation price – 
which would happen in the case of at least one bidder informed about such price and 
willing to participate in the auction-, then the auctioneer should be indifferent among 
several different auctions he could choose from. For instance, he could use a first-price 
sealed-bid auction or a “sad losers” auction (Riley and Samuelson, 1981). The latter is 
an auction in which every bidder, except the winner, pays her bid. There could, 
however, be a very practical concern that the auctioneer needs to deal with: the revenue 
equivalence theorem states its result in terms of the expected revenue to the seller but 
the seller not always likes or needs to run a large number of auctions of the same object 
– or type of object. Maybe, what is being sold is not ordinary merchandise but a right 
for the exploitation of a public good. Assuming the auctioneer will award the object to 
the highest bidder, would the design of the auction – that is, the payment from the 
bidders – matter to the auctioneer?  The theorem would ease the auctioneer’s worries 
with a categorical “No; it would not”. Well; “it would not” if the auctioneer ran a 
sufficient number of auctions so that on average his revenue from each auction was the 
one predicted by the theorem. 
 

If the auctioneer is not running many auctions or if he is just auctioning one object, 
his attention may shift to find a measure of the variability of such average or mean 
value. In this paper we use a simulator to better understand how large around the mean 
are the variations of running several auctions for at least six different auctions, which 
under the assumptions of the theorem should yield the same (expected) revenue. 
 

In this paper, firstly, we verify the results of the theorem running simulations of a 
broad range of auctions and, secondly, focusing on the variability or fluctuation about 



 

the average revenue of an auction with a given number of bidders, we attempt to find a 
criterion that helps the auctioneer decide about the type of auction to be used. The 
fluctuations are observed and measured in two dimensions for each type of auction: as 
the number of instances of a given auction grows and as the number of bidders in the 
auction increases.  
 
3   The Revenue Equivalence Theorem  
 

Theorem (Klemperer, 2004). In an auction of a single object, suppose there are n risk-
neutral potential bidders with privately known independent signals drawn from a 
common distribution, F(v). Then any auction mechanism in which (i) the object always 
goes to the buyer with the highest signal, and (ii) any bidder with the lowest-feasible 
signal expects zero surplus, yields the same expected revenue. 
 
Proof. See (Klemperer, 2004), Chapter 1, page 17. 
 

3.1   Optimal bids 
 

In all auctions considered here, the winner is the bidder with the highest bid; ties are 
broken randomly. In an all-pay auction every bidder pays her bid; in sad losers, all but 
the winner pay their bids; in last-pays only the bidder with the lowest bid pays. In Santa 
Claus the auctioneer takes the payment from the winner and gives back a portion of it to 
all bidders, including the winner (Riley and Samuelson, 1981). First-price and second-
price are the so-called traditional auctions where the amount paid by the winner is the 
highest bid or the second highest bid, respectively. 
 

We have used the result above to calculate the optimal bids in several auctions 
which comply with the conditions of the theorem. Starting with basic results for two 
bidders presented in (Riley and Samuelson, 1981), we previously calculated, (Beltrán et 
al., 2003) the optimal bids for n bidders in all-pay, sad losers, last-pays and Santa-Claus. 
To the latter, we have added the first-price auction, whose optimal bid expression is 
found in (Gibbons, 1992), and the second-price auction where it is optimal for a bidder 
to bid his true value (Klemperer, 2004). Optimal bid functions for n users in the 
auctions mentioned can be found in Appendix A. 
 

3.2   Simulating the auctions 
 

In order to perform the computational experiments we used a random number generator 
to determine the bidders’ valuations; the valuations are uniformly drawn from the 
interval [0, 1]. Every run consists of a number of auctions or replications of the auction, 
for a predefined number of bidders; the bids are calculated according to the optimal bid 
functions obtained in the preceding section. The simulator determines the optimal 
allocation and the revenue for the seller, repeating this procedure until the number of 
desired replications is completed. The runs are conducted while varying the number of 
bidders and the number of replications. For each run we calculated the mean revenue for 
the auctioneer and the coefficient of variation. This was done for each of six auctions: 
first-price, second-price, all-pay, Santa Claus, sad losers and last-pays. The analysis that 
follows uses data from all auctions except last-pays, which because of its particular 
design deserves a special analysis in a subsequent section. Charts 1 and 2 show, for up 
to 20 bidders, the average and coefficient of variation for 20 replications. 
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Chart 1. Mean revenue for 5 auction types. Chart 2. Coefficient of variation for 5 
auction types. 
 

It can be observed that as the number of bidders increases, the mean revenue 
approaches the theoretical expected revenue and the variation around the mean 
decreases for most of the auction types. However, this variation is significantly different 
for sad loser and all-pay. This is also confirmed if the number of replications is 
increased. Appendix B illustrates this fact, where simulations results are reported in 
which 50 and 100 replications were performed for auctions with up to 20 bidders.  
 

In the traditional auction formats (first-price and second-price auctions) fluctuations 
around the mean revenue are less than those of the other auctions, except for the Santa 
Claus auction. It is a straightforward result that by increasing the number of 
replications, the degree of variability around the mean revenue decreases. Runs with 
100 and 500 replications were also done. Those results show that, as a function of the 
number of bidders, the coefficient of variation converges to zero for first-price, second-
price and Santa Claus, and seems to settle around 0,65 for all-pay. However the 
variability of sad losers remains high when compared to the others and does not seem to 
converge to any value. 
 
4   A real experiment 
 

Our previous experimentation with auctions in a broader setting has included the 
development of SUBASTIN1, a web application for the administration of auctions over 
the Internet. SUBASTIN collects the bids from the players and determines the winner in 
a fairly large family of auctions2. Using SUBASTIN we ran an All-pay auction where 
bidders were students of a Game Theory class3. When bidding to get the object being 
auctioned, the bidders used their SUBASTIN Web windows; the results are summarized 
in the following table (Table 1): 

Bidder ID Bid 
Elcoyote 0 
 rickyricon 1000 
carmedelgad3 10000 
juangalind 12000 
andrevasque1 10000 
andresantac 500 
diegomartin 100 
diegodiazm 1000 
rubenjacome 100 
javieguarin 0 

                                                 
1 http://subastas.uniandes.edu.co 
2 SUBASTIN administers all the auctions described in this paper plus several dynamic auctions such as ascending 
English, descending Dutch, German, and simultaneous ascending. SUBASTIN is also capable of administering 
single-bid combinatorial auctions. 
3 Universidad de Los Andes, Department of Industrial Engineering, Game Theory course, January-May 2004. 



 

florbetanc 100 
mauriescoba 0 
ricarpedraz 15000 
paulabarrie 20000 
j2zp 13000 
francnoguer 14000 
sebassalaza 100 
maurisuarez 2000 
juanredond 1000 
elmani 500 

Table 1. Bids in a real All-pay auction. Bids are stated in Colombian pesos (COP). In 
April 2004 the exchange rate was US $1 = COP $ 2700. This illustrates that the object 

auctioned did not mean a high expense to any bidder. 
 

The market value of the auctioned object was about $15000. So, the auctioneer was 
not only able to recover the cost of purchasing the object but also able to make quite a 
bit of a profit. It is clear that at least three bidders were not interested at all; some others 
bid a very low value. It is tempting to say each of these bidders thought of winning the 
auction expecting others to bid low as well. Perhaps they disliked the idea that the 
auctioneer could profit excessively. However, quite a few bid high, even close to the 
market value. This behaviour contrasts against the behaviour of those who bid low.  
 

This experiment is just a sample of what could happen in a non-traditional auction, 
even though such type is one that satisfies the assumption of the theorem, at least in 
regard to who wins the auction and the seeming independence of the bidders’ 
valuations. Simulations of all-pay show a larger variability of the expected revenue than 
that of first-price, second-price, and Santa Claus auctions. The results from the 
experiment shed some light on the possibility that an auctioneer prefers using one 
auction over other.  
 
5   Some experimental difficulties of Last-Pays 
 

Results shown in Appendix B for simulation runs of last-pay are not quite encouraging. 
Expected revenue in auctions in which a few bidders are simulated is close to the 
theoretical value calculated in Appendix A. However results no longer seem to hold as 
long as more bidders are included. 
 

In last-pays the auctioneer has positive revenue only if the valuation for all the 
bidders is greater than the reserve value. If at least one bidder’s valuation is less than the 
auctioneer’s reserve value, the revenue for the auctioneer will be zero as such a bidder is 
the one who should be paying. The probability that all valuations are greater than the 
reserve value decreases when the number of bidders increases; this also increases the 
probability that the auctioneer’s revenue is zero. The results of the simulation runs 
performed on last-pays show that when the number of bidders increases, the expected 
revenue for the auctioneer goes to zero. It is therefore necessary to increase the number 
of runs. Appendix B shows the difference in expected revenue obtained when a 5000- 
replication simulation is compared to a 50000-replication simulation.   
 
6   Conclusions 
 

For each run, that is, an auction type simulated several times with a given number n of 
users, we have found the expected revenue to the auctioneer and a measure of the 
variability of such result using its coefficient of variation. When the number of bidders 
is fixed we have then compared such measure across several auction types. If an 



 

auctioneer does not have the time or the need to run a large number of auctions, would 
the result provided by the theorem influence his decision as to which auction to use? If 
he is interested in maximizing his revenue, all-pay or sad losers seem to provide some 
greater degree of variability of the expected revenue. From the results we can argue that 
an auctioneer seeking to improve his revenue may prefer one auction to other, if he is 
willing to bear the risk implied in the variance of the revenue. 
 

For the real auction we performed, if we believed that the assumptions of the 
theorem held, in particular, that the students’ signals were independent, then we might 
assert the auctioneer could have used a first-price or second-price auction instead. In the 
context of the main result of the theorem we would have expected the same revenue for 
the auctioneer without worrying about the type of auction administered. However, as 
the results of simulations showed the variability of the revenue is quite different in all-
pay when compared to the more traditional first-price and second price. It is in this 
sense that the result from the real experiment becomes relevant to the inquiry about the 
auctioneer’s question posed at the beginning and the risk he incurs in when answering 
such a question. 
 
7   Appendix A  (Beltrán et al., 2003) 
 
Optimal bidding function in Santa Claus auction with n bidders. 
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Santa Claus’ gift to every bidder in a Santa Claus auction: 
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Optimal bidding function in Sad Losers auction with n bidders. 
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Optimal bid function in Last-pays auction with n bidders. 
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Auctioneer’s expected revenue: 
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8   Appendix B 
 
20 bidders. Results from 20 replications 
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20 bidders. Results from 100 replications 
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20 bidders. Results from 500 replications 
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50 bidders. Results from 100 replications 
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50 bidders. Results from 500 replications 
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Last-pay: 15 bidders. Results from 5000 and 500000 replications 
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